1,559 research outputs found

    Atomic selfordering in a ring cavity with counterpropagating pump

    Full text link
    The collective dynamics of mobile scatterers and light in optical resonators generates complex behaviour. For strong transverse illumination a phase transition from homogeneous to crystalline particle order appears. In contrast, a gas inside a single-side pumped ring cavity exhibits an instability towards bunching and collective acceleration called collective atomic recoil lasing (CARL). We demonstrate that by driving two orthogonally polarized counter propagating modes of a ring resonator one realises both cases within one system. The corresponding phase diagram depending on the two pump intensities exhibits regions in which either a generalized form of self-ordering towards a travelling density wave with constant centre of mass velocity or a CARL instability is formed. Controlling the cavity driving then allows to accelerate or slow down and trap a sufficiently dense beam of linearly polarizable particles.Comment: 5 page

    Modelling space appropriation in public parks

    Get PDF

    Fostering energy-awareness in simulations behind scientific workflow management systems

    Get PDF
    © 2014 IEEE.Scientific workflow management systems face a new challenge in the era of cloud computing. The past availability of rich information regarding the state of the used infrastructures is gone. Thus, organising virtual infrastructures so that they not only support the workflow being executed, but also optimise for several service level objectives (e.g., Maximum energy consumption limit, cost, reliability, availability) become dependent on good infrastructure modelling and prediction techniques. While simulators have been successfully used in the past to aid research on such workflow management systems, the currently available cloud related simulation toolkits suffer form several issues (e.g., Scalability, narrow scope) that hinder their applicability. To address this need, this paper introduces techniques for unifying two existing simulation toolkits by first analysing the problems with the current simulators, and then by illustrating the problems faced by workflow systems through the example of the ASKALON environment. Finally, we show how the unification of the selected simulators improve on the the discussed problems

    Fostering energy-awareness in scientific cloud users

    Get PDF
    © 2014 IEEE.Academic cloud infrastructures are constructed and maintained so they minimally constrain their users. Since they are free and do not limit usage patterns, academics developed such behavior that jeopardizes fair and flexible resource provisioning. For efficiency, related work either explicitly limits user access to resources, or introduces automatic rationing techniques. Surprisingly, the root cause (i.e., the user behavior) is disregarded by these approaches. This paper compares academic cloud user behavior to its commercial equivalent. We deduce, that academics should behave like commercial cloud users to relieve resource provisioning. To encourage this behavior, we propose an architectural extension to academic infrastructure clouds. We evaluate our extension via a simulation using real life academic resource request traces. We show a potential resource usage reduction while maintaining the unlimited nature of academic clouds

    Probing and characterizing the growth of a crystal of ultracold bosons and light

    Get PDF
    The non-linear coupled particle light dynamics of an ultracold gas in the field of two independent counter-propagating laser beams can lead to the dynamical formation of a self-ordered lattice structure as presented in (2016) Phys. Rev. X 6 021026. Here we present new numerical studies on experimentally observable signatures to monitor the growth and properties of such a crystal in real time. While, at least theoretically, optimal non-destructive observation of the growth dynamics and the hallmarks of the crystalline phase can be performed by analyzing scattered light, monitoring the evolution of the particle's momentum distribution via time-of-flight probing is an experimentally more accessible choice. In this work we show that both approaches allow us to unambiguously distinguish the crystal from independent collective scattering as it occurs in matter wave super-radiance. As a clear crystallization signature, we identify spatial locking between the two emerging standing laser waves, together creating the crystal potential. For sufficiently large systems, the system allows reversible adiabatic ramping into the crystalline phase as an alternative to a quench across the phase transition and growth from fluctuations

    Meshfree exponential integrators

    Get PDF
    For the numerical solution of time-dependent partial dierential equations, a class ofmeshfree exponential integrators is proposed. These methods are of particular interest in situationswhere the solution of the dierential equation concentrates on a small part of the computationaldomain which may vary in time. For the space discretization, radial basis functions with compactsupport are suggested. The reason for this choice are stability and robustness of the resultinginterpolation procedure. The time integration is performed with an exponential Rosenbrock method.The required matrix functions are computed by Newton interpolation based on Leja points. Theproposed integrators are fully adaptive in space and time. Numerical examples that illustrate therobustness and the good stability properties of the method are included

    A History of the Improvement of Internet Protocols Over Satellites using ACTS

    Get PDF
    This paper outlines the main results of a number of ACTS experiments on the efficacy of using standard Internet protocols over long-delay satellite channels. These experiments have been jointly conducted by NASA\u27s Glenn Research Center and Ohio University over the last six years. The focus of our investigations has been the impact of long-delay networks with non-zero bit-error rates on the performance of the suite of Internet protocols. In particular, we have focused on the most widely used transport protocol, the Transmission Control Protocol (TCP), as well as several application layer protocols. This paper presents our main results, as well as references to more verbose discussions of our experiments
    • …
    corecore